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Its Second Critical Value 
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The asymmetric contact process on Z has two distinct critical values ;.~ < 22 (at 
least with sufficient asymmetry).  One can consider the process on {0 ..... N} and 
analyze the time (which we call a.v) till complete vacancy starting from com- 
plete occupation. Its behavior has already been resolved Ibr all regions of 2 
except for 2 = 22. For this value, Schinazi proved that limA,_ ~ log aA,/log N = 2 
in probability and conjectured that a,v/N'- converges in distribution. It is that 
result that we prove in this paper. We rely heavily on the Brownian motion 
behavior of the edge particle, which comes from Galves and Presutti and 
Kuczek. 

KEY WORDS:  Asym,netric contact process: edge speeds. 

1. I N T R O D U C T I O N  

The asymmetric contact process on Z is a continuous-t ime Markov  process 
3, on {0, 1} z that evolves with the following rates: if ~ , ( x ) =  1, then ~,(x) 
changes to 0 at rate 1; if ~ , ( x ) = 0  then ~,(x) changes to 1 at rate 
2S , (x  + 1 ) + 2,.~.,(x - 1 ). Casually speaking, we can describe it as follows: 
Every integer is either infected or healthy. If x e Z  is infected, then the 
infection dies out (i.e., x becomes healthy) at rate 1; if there is an infection 
at y ~ Z, then. it infects y - 1 at rate ,;tt and infects y + 1 at rate 2,.. We let 
21=02 and 2 , . = ( 2 - 0 ) 2 ,  where 0 e [ 0 , 2 ]  is fixed and 2 > 0  is the 
parameter. In this formulation, 0 = 1 gives us the basic contact process, 
which has been studied for two decades. For background material, see 
Liggett 18~ or Durrett. 12~ 
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The nature of phase transitions in the asymmetric case can be more 
interesting (and less clear) than in the symmetric case. Let ~',J be the asym- 
metric contact process whose initial state is ~~ = 1 iff x = 0. Define the 
following two critical values: 

. v e Z  

and 

22 = sup{2: lim sup,_.~. P(~,~(0)= 1 ) = 0 }  

The first critical value tells us when there is global survival and the second 
critical value tells us when there is local survival; it is clear that 2, ~< 2 2. 
While the two critical values are equal in the basic contact process, it is 
known that they are not equal when the asymmetry is sufficiently 
great-- that  is, when 0 is sufficiently far from 1. c1~ While it is certainly not 
unreasonable to expect that they are different for any 0 other than 
one--Schonmann conjectured exactly that--nothing more is known. 

In discussing the critical values and phase transitions, it is useful to 
look at edge speeds. Let ~.~, .... �9 be the asymmetric contact process whose 
initial state is ~I~ . . . .  ~ = 1 iff x ~< 0. Then let r, be the rightmost particle: 

r , = s u p { x  ~ ZId_ I, . . . .  ~  1} 

It is known that there exists ~,. ~ [ - c~, c~) such that l im,_ ~ r,/t = ~,. a.s. 
Similarly, using the leftmost particle l,, there exists ~ e [ - c ~ ,  or) such 
that lim . . . . .  l , / t=  - e q  a.s. 

In Schonmann/lm the critical values are related directly to the edge 
speeds via the following results: 

2 = 21 r ~,.= 0 

2 = 22 *~ m i n ( . .  0~,.) = 0 
(1.1) 

For this paper, we will only concern ourselves with O such that 
2~ < 22. From the above characterizations we know that one edge speed is 
strictly greater than the other throughout the intermediate region. Without 
loss of generality, we will assume that 0c,.> ~ on the region [21,2.2]. We 
point out that we cannot say if ~,. > ~ is the same as 0 < 1, though it cer- 
tainly would not be unreasonable to think that it is. In fact, we only know 
ct,. ~> ~/ for 0 sufficiently close to 0. This matter is, however, only a side 
point for the purposes of this paper. 
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We now wish to relate the phase transitions of the asymmetric contact 
process to its behavior when restricted to a finite set. Fix a (large) integer 
N and denote by 1/, the asymmetric contact process on {0, 1 ..... N -  1 } with 
the births on - 1  and N suppressed. Then let a u be the first time that q, 
has no infected particles, starting at the initial configuration qo(x)= 1, 
VxE [0, N - 1 ] .  The order of magnitude of the extinction time aN can 
change dramatically when 2 moves on and off its critical values. 

In the subcritical basic contact process, Durrett  and Liu c3~ showed 
that the extinction time behaves logarithmically in the sense that aN/lOg N 
converges in probability to a positive finite constant. Schinazi ~91 pointed 
out, while beginning the analysis of a N in the asymmetric case, 
that their argument can be adapted to the asymmetric case. Durrett and 
Schonmann ~ol gave a proof  for the supercritical basic contact process that 
the extinction time behaves exponentially in the sense that log ax /N  con- 
verges in probability to a positive finite constant. This, too, can be adapted 
to the asymmetric case. For  the critical basic contact process, the extinction 
time behaves like a polynomial in the sense that a u / N ~  ~ while 
au/N 4_%e 0.~51 

Schinazi ~9~ showed that the extinction time for 2 ~ [2j ,  2,_) behaves like 
N in the sense that au/N I-C, -- 1/0q. This leaves only the behavior of aN 
when 2 = 2,. For  that case, Schinazi ~9~ proved that aN behaves like N 2 in 
the weaker sense that log aN~lOg N-" --% 1. He then conjectured that ~N/N 2 
would converge in distribution. It is this result that will be proved here. 
Specifically, the following result is shown. 

Theorem 1.1. Assume that 0 is such that 2~ < 2  2 . Then at 2 = 2 2  
we have that 

�9 (7 N 
!lm -z-~.~=inf{t: IB, I = I }  in distribution 

A ~ , s _  N -  

where B is a Brownian motion with some nontrivial diffusion constant. 

F rom now on all discussion is focused on the second critical value, 
where, using ( 1.1 ), 

cc / = 0 and ~,. > 0 (1.2) 

To analyze the behavior of aN, we must first analyze the behavior of 
the edges of the finite process, which we will denote by l, ~'t~ N-~] and 
rT't~ Actually, of the two directions, the left--which has speed 0 
while the other speed is posi t ive--should seem to be more significant�9 
Indeed, if we could show that our left edge has, in some sense, Brownian 
fluctuations, then the convergence in distribution of aN/N z could become 
trivial. This will now be made more precise. 
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In the supercritical basic contact process, the leftmost particle con- 
verges to Brownian motion when scaled in the usual way. This was first 
shown by Galves and Presutti/6~ Kuczek ~v~ has a rather intuitive proof  in 
the supercritical oriented percolation setting which can be adapted without 
great pain to our setting. So, this result is stated as Theorem 1.2 below. 

T h e o r e m  1.2. In the Skorohod topology, 

lira Ix,_,/N= B(t) in distribution 
N - ,  - /  

given {0 survives}, where B is a Brownian motion with some nontrivial 
diffusion constant. 

The process B in Theorem 1.1 is the same process as that in Theo- 
rem 1.2. While the diffusion constant for this Brownian motion may not be 
1, this is of no interest for the purposes of the main result. Whenever we 
refer to Brownian motion, it will have the same diffusion constant as the 
one in the above theorem. 

While the Brownian motion behavior of  l, is known, we actually seek 
information about l~ "[~ I]. Of course, it cannot really fluctuate like 
Brownian motion, since it always lies in [0, N].  However, the bound of N 
is merely a technicality which should not bother us; after all, 

a N = i n f { t > O : l ~  , l",x I]~>N} 

As for the bound of 0, it can lead us to believe that l 7`["'v ~ should 
converge to reflecting Brownian motion when appropriately scaled. 

For reasons mentioned in the previous paragraph, we define 

= ~l~ l " ' v -  II if t <aN 
L, ( [ N + / ~  . . . . .  [ if t>~a,v 

where B, is a Brownian motion independent of the contact process. For 
our purposes, L, is the same as 17 t:...v- ~]; however, the change allows us 
conveniently to state the following theorem, which we will later prove. 

T h e o r e m  1.3. Assume that 2 = 2 ,  with ~ =  0 and a,. > 0. Let B b e  
a Brownian motion (with a diffusion constant as in Theorem 1.2). Then 

lim LN,-,/N= IB(t)l in distribution 

From this theorem, we can immediately conclude Theorem 1.1. The 
next section contains definitions and a brief outline of the remaining 
sections, which contain the proofs. 
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2. D E F I N I T I O N S  

Some time must  now be taken to recall the graphical construct ion of 
the asymmetric  contact  process and to discuss some related nota t ion that 
will be used extensively. For  all x ~ Z  let {I)"(n): n~> 1}, { I;~(n): n~> 1}, and 
{DX(n):n~>l} be independent  Poisson processes at rates 2/, 2,. and 1, 
respectively. For  each D"(n),  mark  a fi over the point  (x, DX(n)); for each 
l)"(n) [resp. I;'.(n)], draw an arrow from (x, I)"(n)) to ( x - 1 ,  I)"(n)) [resp. 
from (x, I;~(n)) to ( x +  1, l;'.(n))]. Given (x, s) and ( y ,  t), we say that there 
is a path from (x, s) to (y, t) (or  a path from x at time s to y at time t) 
if there exist integers Yo <) '~  < "'" < Ym and positive reals tc~ < tt < . . .  
< t,,, +~ such that Yo = x ,  to = s ,  y,,, = y ,  tm +~= t, there is an arrow from 
(Yi-~, tA to (y~, tA (for each 0 < i ~ m ) ,  and there is no fi marked over any 
point in { v~} • [t~, t~+~] (for 0 ~<i~< m). Given such integers and positive 
reals, define a path to be the set consisting of the points in [y~ ~, ),~] x t~ 
(for 0 < i ~ < m )  and the points in {y~} • [tg, t~+~] (for O<~i<<,m). For  more  
generality, we may replace x and y above by sets of integers (or  s and t by 
sets of  positive reals) with the obvious meaning. Also, we write 
At x Ut ~--,A_, x U2 as shor thand for "there is a path from A~ x U~ to 
A_, • U2." Now, given A c Z  and given s E R  +, define (for reals t > s  and 
integers x) 

~.~l • = 1.t • ,.,. ,~ 

This yields a version of the asymmetric  contact  process as defined earlier. 
Now define (for reals t > s )  

I;' •  inf{x: ~.;' •  = I} 

as well as 

r~-' • = sup{x:  ~;' • = 1} 

with the usual convent ion that the infimum of  the empty set is infinity. 
Next, let N be a positive integer. For  0 ~< x ~< N -  1, define 

r/;l • = 1.4 . . . . .  i.,-.~,,~ia~ [o.,v ij • ~ 

where "inside" simply means "and there is such a path lying inside"; that 
is, q ; J •  iff there is a path from A x s to (x, t) lying inside 
[0, N - l ]  x [ 0 ,  Go). This yields a version of the asymmetric  process on 
[0, N -  1 ]. Fo r  the left and right edges of  this process, define 

17" '~ • = min{ N, inf{ 0 ~< x ~< N - 1" r/J • "(x) = 1 } } 
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as well as 

r~' A • max{0, sup{0 ~< x ~< N - -  1" ~/;' • = 1} } 

In the above definitions, if s = 0 ,  we suppress s and if A =  {0}, we sup- 
press A. 

We will say that ~/..t dies out at time t if Y~.,-~z r/?~J(x) is positive for 
0 < s < t and is zero for s = t and we say that II A is alive at time t if q "~ has 
not died out before (or at) time t. Using this terminology, let o- N represent 
the time that q[o. N-~] dies out. 

Having completed our discussion on the graphical representation and 
its associated definitions, we can now begin to focus on Theorem 1.3. 
Rather than trying to prove the theorem from scratch, we would like to 
make use of Theorem 1.2. Unfortunately, l '~ does not look like l; we 
immediately have a problem with the boundary. So we seek to create a 
process that is similar to l", but does not immediately hit the boundary. 

To do this, consider a process on [0, N]  starting with occupations on 
[eN, N). In this case, the boundary is not an immediate issue. Of  course, 
the left edge in this process will eventually hit its extreme. Let us say it hits 
0 rather than N. Then we start to have the same problem we had to begin 
with. So at that moment  modify the configuration by forcing a vacancy at 
every site in [ 0, eN). Once again, the boundary is removed from immediate 
concern. Proceed in this manner  until the edge hits N rather than 0. With 
this thinking in mind, let e > 0 and make the following recursive definitions: 

T ~  

H' = [eN, N) 

1 IU, [oN, N) Zl(t) = ~ ',v-', 

T '  = inf{ t  [ X ' ( t ) r  (0, I)} 

If T'" < o~ and X'"(T"') = 0, then 

H ' ' '+ l -  I I m x N 2 T " - I  [eN, N) 
-- q T m ( '~ 

X', '~l+l/~l__ 1 irl, l . p n + l x N 2 T m  
t )  - -  ~ t N2(I + T m ) 

T ''+' =T'"+inf{t[X'"+'(t)(~(O, 1)} 
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Otherwise (and this is for convenience only) 

H , , , + l = ( - - c ~ ,  ~ )  

X , , ,  + I = I + B 

where B is a Brownian motion, and 

T"' + ~ = 

Then concatenate the processes together by defining 

Y':(t)= ~ X " ' ( t - T ' "  ~)ItT,,-,.T,, ~ 
t i t  ~ ] 

Y': is defined so that its behavior can be compared to that of the left 
edge on the line (as opposed to the interval), whose behavior is under- 
stood. We will prove a result for Y': based upon Theorem 1.2. To state the 
result, let {B;} be independent Brownian motions. Then make the fol- 
lowing recursive definitions: 

X~ = e  + B ~ 

T~_ =inf{tlX~._, r 1)} 

If XI!:_(T',!" ) = O, then 

Otherwise 

Finally, define 

X'j  +t = e + B  '"+t 

'" " " '+ r  1)} T'.~ + t =  Tr,  + m f { t l X ,  

X'~ +l = 1 + B  '''+l 

T,~j_+ I = 

r'~L(t)= • x " ' ( t  . . . .  ' . . . .  ' w "  

With these definitions, we can state the proposition to which we have 
alluded. 

P r o p o s i t i o n  2.1. In the Skorohod topology, 

lim Y~v = Y'~ in distribution 
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This proposition is the true-key to both Theorem 1.3 and Theorem 1.1. 
To obtain Theorem 1.3 from Proposition 2.1, some technical care must be 
taken in proving an appropriate relationship between L and Y'Jv. However, 
after understanding Y2, through the proof of Proposition 2.1, this detail 
becomes simply tedious, but not difficult. We will avoid this detail and 
locus solely on the real issue: Proposition 2.1. (We should add here that we 
do not even require Theorem 1.3 and could go quickly to Theorem 1.1. 
However, the statement of Theorem 1.3 gives a better understanding of the 
system than does the statement of Proposition 2.1.) 

In the next section, we prove an intermediate result which brings the 
Brownian motion behavior into the finite state space. Then in Section 4 we 
will complete the proof of Proposition 2.1. 

3. BEHAVIOR OF THE LEFT EDGE ON [0, N -  1] 

For this section, let GN be a random subset of [eN, eN+v/-N ], inde- 
pendent of r and let 

AA,= {[Gu ~> log N} 

SN = inf{ t l/'~'- ,v-',a'v'~- ,t~ N)} 

51'~,(,"/N if t ~< SN 
G v Zx(t)=[IN:,/N if t>Sx  

[The definition of Z:v(t) for t > Sx is for convenience only.] In this section 
we shall prove the following proposition; we will make use of it in the next 
section. 

Propos i t ion  3.1. Z,,v on A,v converges in distribution to e+B, 
where B is a Brownian motion, if lim inf x P(A:v)> 0. 

The condition on A A, is a trivial technicality; indeed, if the 
probabilities of those events are not large, then the result is not very helpful 
anyway. As we will see in the next section, the probability of those events 
will be quite high when we apply this proposition with GN=HIv c~ 
[ eN, eN + x//N]. 

This proposition follows from the following two lemmas using a com- 
mon convergence result (see Theorem 4.1 of Billingsley~ }). The first lemma 
is a basic extension of Theorem 1.2 and the second is the link between the 
finite state space and the infinite one. (We should note that the Skorohod 
topological space is also a separable metric space.) 

L e m m a  3.2. I~;~,/N on A,v converges in distribution to e + B, where 
B is a Brownian motion. 
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I (-;,'; I &T L e m m a  3 . 3 .  ZN(t)--,N:,/~, converges in probability to 0 (in the 
S k o r o h o d  space). 

Proof of  Lernma 3.2. First, define Ru=inf{s](1 a',_, , s)  survives}, and 

Gx -t- N 2 3] } ,4N=Ax n { R N < v / N  } n { / , , � 9  [ e U - U  2/3, eU 

Now, it follows (from Theorems 12 and 13 of Schonmann tm~) that 

P(RA, < , / U l  1 

Further, letting 

Cx = { eN + N 23 > g, ........ N+ ,/~:1 >~ I}':X" -,, > eN-- N 23 Vt < .v/N} 

it follows from a now-standard argument for edge speeds that 

P(CN) --* 1 

Letting C:\, denote the complement of CN, it then follows that 

lim P(~Ix[A~)>~lim P({ RN < v/N} c~ C,,,I A,+,) 
N N 

~> lim P(A,v ~ { R x  < v / N }  ) -- P(C~v) 
N P(A N) 

= lim P ( R  N < Nt/~[ AN) 
N 

=1 

So it suffices to show the lemma for ,4.,v instead of for Ax. 
To deal with the finite dimensional distributions, we pick L > 0 and 

will prove the lemma when considering the processes as functions over 
[N,732, L] for each No. Let N > N . .  Then, for each t �9  -3'2, L],  it is 
clear that t > Rx /N  2 on A.,v. Also, for each s > Rv, the following equality 
holds on A.,x,: 

�9 i 

l ~''' = l/~:' • +~., 

On  A,x, these t w o  facts i m p l y  that  

,v-', 'Z R., + (3.1) 
N N N 

as functions over [No 32, L] and where [ is an independent copy of / on 
its copy of {0 survives}. Now, since /~;',i �9 [ e N - N  2~3, eN+ N2'3], the first 
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addend of the right-hand side of (3.1) converges in distribution to e. On 
the other hand, Theorem 1.2 says that the second addend converges in 
distribution to a Brownian motion. This is sufficient to show that the finite 
dimensional distributions of I G''/~' (on -4,v) converge to e + B .  As for the t V 2 l t a  �9 

tightness of a,,, IN,_,/N (on AN), it follows using the ideas of Kuczek/vl just as 
it did in Theorem 1.2. 

Proof  o f  L e m m a  3.3.  First of all, it suffices to prove the result in the 
L '~ metric space, as the Skorohod topology can be generated via a metric 
that is dominated by the L ~- norm. That is, we will show 

1 Gx/NI ~ 0 (3.2) sup ] Z N ( t ) - - ,  N~-,, , 
t 

That said, let us now make the following four observations: 

�9 If/c,,. has yet to hit 0 or N at time N2s, and if y/a,,, is still alive at 
time N-s, then Z N( t ) G,v = I N,.,/N for t <~ s. 

�9 If N2s is the first time that /,GN=0, and if t/<' is still alive at time 
N-s, then Z N ( t ) =  c,~, IN,.JN for all t. (Given those conditions, we have 
that I~ c,~,_ ~a,,, for all t ~<s. The observation follows.) . N 2 t  - -  I N 2  t 

�9 If N2s is the first time that IC,'.V=N, and if VaA. had not died out 
") G N  before time N-s, then Zu( t )  = IN2t/N for all t. (In this case, qG,,, must 

die out at time N'-s.) 
"~ GN �9 If qa,,, dies out at time N-s, then Z N ( t ) =  IN'.,/N for all t > s. 

It follows from these four remarks that Z N ( t ) = I  a'' /~r N-',/'* at all times t 
except (possibly) at a single time (namely, the time when qc,.,, dies out). 

Hence, given fl > 0, 

P(3t, au l ,v ,_ , /N_ZN(t)>~fl )<~p(3t  ' G~,, __ IN,.t/N lim l~'~,,/N>~fl) (3.3) 
l ,  .-" t 

But, taking advantage of the previous lemma, we have that the right-hand 
side of (3.3) converges (as N goes to or) to 0 (as Brownian motion has, of 
course, no discontinuities). 

G:V Now we must deal with the case that Z N ( V ) - - I N , _ J N >  fl for some v. 
"~ G N  That would mean ( i ) r f f  N must die out at time N-SN,  (ii) /N.,S.x < 

(1 fl) N, and (iii) Gx -- l s~_, > 0 for each t <~ SN. Further, for that to be true, any 
GA, path from GN •  to (IN-'SN' N2SN) must hit N x  (0, ~ )  and no such path 

can ever hit 0 x (0, m). Otherwise qG,,, would still be alive at time v. Define 
rt = i n f { t > 0 :  ~ N ( N ) =  1} and, for each i, 

r;+, = inf{ t > r,: ~,~^'(N) = 1, lim ~.,.C,x(N) = 0} 
. ' ; / "  / 
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So if ZN(V) ,a.~, IN> tr --~u'-,./ ~., then the following event must hold for some i: 

Q~= {3N2t e (r~, N2SN], 3xe(O, 1 --fl)N], (N, r~) *-+ (x, NZt), ~' I~N2t (X)  = 0} 

Now, it is easy to see that lim N ..... p(N2SN<N3<'cA~)= 1. So the proof 
is complete after establishing 

lim 
N ~  

which will follow from 

i=1 

P(Q~) < Ke - ).N (3.4) 

where K and ), are positive constants independent of N and i. 
Let 1 ~< i~< N 4. Choose k < 1/ct,.. Then write 

e(Qi) <P(Qi ~ {Vse [ri, r~+ kN], l',) . . . .  > (1 - f l )  N} 

n {0x [r~, r i + k N ]  ~ [N, ~ )  x ( r i + k N ) } )  

+ e ( q s e  [r~, r , +  KN], l~'• (1 - f l ) N }  

+ P ( 0  x [ri, z~+kN] ~ [N, co) x( r~+kN)})  

For the last addend, the Markov property, self-duality, and an edge speed 
result yield 

P(O • [ r~, r~ + kN] */* [ N, ~ ) • (ri + kN))  <~ P(r~.~, '~k" o] ~< N) < Ke rN 

Another edge speed result yields exponential decay of the second addend, 
as the left edge speed is zero. Finally, the first addend is equal to zero. To 
see this, take N2te(r i ,  N'-SN] and x~(0 ,  (1 - f l ) N ]  and realize that 

(N, ri) ~ (x, N2t) 

'r [ri, r i+kN] ,  N• l.,. > ( 1 - f l )  N 

and 

0 • [ri, r i + k N ]  ~ [N, c o ) •  

GN imply that there is a path from GN • 0 to (x, N2t}--that is, I1N2,(X) = 1. SO 
(3.4) and hence (3.2) follow routinely. II 
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4. P R O O F  OF P R O P O S I T I O N  2.1 

In this section, we will apply Proposition 3.1 to prove Proposition 2.1. 
Define 

AI,, { ' = IH A, c~ [~N, ~ N + - , / ~ ] ]  >t log N} 

If lim inf,v P(A~,)?, >0,  then Proposition 3.1 says that X<, on A ru converges 
in distribution to e + B, where B is a Brownian motion. If we could show 
that 

lim P ( 0  A.,~,) = 1 (4.1) 
N - ,  ~x 

then we could finish the proof of Proposition 2.1 without difficulty. Those 
extra routine technicalities will be omitted here; the proof will be completed 
by showing (4.1). 

Proof o f  (4.1). First (suppressing N whenever it is convenient), let 

D r= {Xr(T r)=0} 

We know that 

P ( N  AJ, v )=P( (D ' ) " )  + P(D' nA'-  n(D2)  c) 

+ p(D I chA2 ~D2  AA3  A(D3) '') + ... 

However, since A r and D r are all increasing events, 

p(Ak lDl  n A 2 n  ...  n D  k 2 ~ A k - l  n D k  I ) = p ( A k [ D ~ - t  n A k - t  ) 

>~p(AkID k - t )  

where the inequality follows from the FKG inequality. (For the FKG 
inequality, see Liggett, c8~ for example.) Also, 

P(Dk[D I c~A'-n ... n D  k-I  c~Ak)=P(Dk lD~- I  n A  k) 

Putting everything together, we have 

, dA, a,v (1 - d  N) (4.2) 
. - =  . =  k I l I 
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where 

and 

a~v = p ( A k  l D  k -  ') 

d~v = P ( D k l D  k - I m At,)  

761 

Indeed, the proof of (4.1) finishes easily from (4.2)-(4.4) as follows: Given 
/3 > 0 we can pick K, 6 so that 

(1 - ( 1  + 6 ) ( 1 - e ) ) ( 1  - ( 1  - e ) ) - I ( 1  - ( 1  --e)x)(1--6)-'~x-I~> 1 --/3 

Then, using (4.3) and (4.4), we know that for large enough N and for 
i < < . K , a % > l - O  and d l v ~ ( ( 1 - 6 ) ( 1 - e ) , ( l + ~ ) ( 1 - e ) ) .  Finally, using 
(4.2), we have 

P A/N ~ NUN )(1--dN)> 1--fl 
�9 k = l  i = 1  

We will now prove (4.3) and (4.4) together by induction on i. Clearly 
alv= 1; as for d~v, the proof is similar to the induction step and so we avoid 
writing the same proof twice. Now, assume (4.3) and (4.4) for all values 
less than or equal to i. We seek to show 

P(IH i+ 'c~ [ sN ,  sN + v /N]  I >/log NID ~) ~ 1 (4.5) 

and 

P ( D  i+t ID i~ . . 4  i+l ) ~ 1 - e  

To show (4.5), we first show the following two claims: 

(4.6) 

lim P( T I v -  T~v - ' > 1 / N I D  i) = 1 ( 4 . 7 )  
N 

and 

i lim P(0 x (N2TIv-- N, NZTIv] ~-, [ e N  + . , /@/2,  e N  + v / -N]  x N - T  N I D' )  = 1 
N 

(4.8) 

Now we will prove (4.1) by showing the following two results: 

lim aN=i 1 (4.3) 
N ~ , : r  

lira dlv = 1 - e  (4.4) 
N ~ 
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To show claim (4.7), first notice that 

llm P(I [,:N. ~ ~ ,~ N-Tv > 0, Vt < N I D;-  ') = lim P(I },:u. ~ ~ > 0, Vt < N) 
N N 

= I (4.9) 

However, we also have that 

lira inf P(D; I D i -  i) >~ 1 - e 
N 

(4.10) 

since, by induction, 

p ( D i l A i ~ D i - I ) ~  1 - ~  

and 

p ( A i I D i - I ) ~  1 

It follows from (4.9) and (4.10) that 

P(I,[eN''Y'}• "-' >O, Vt < N l D i ) ~  1 

This is sufficient to justify the claim (4.7)�9 
Now, to justify claim (4.8), let ldenote the left edge of the dual process 

and proceed as follows (using the FKG inequality for the first step): 

9 i 9 i lim P(0 x ( N - T  N - N ,  N2TIv] ~ [eN + .v/-N/2, eN + x/CN] x N - T  N [D i) 
N 

is bounded below by 

z i z i [eN+x//-N/2, e N + x / ~  ] x N  TN) lim P(O x (N  T N -  N, N Z u ]  ~ 2 i 
N 

which is bounded below by 

lim _,Pt .)'[N':N + ./-;/2.._ ] < 0)  --  P( [ e N  + v/ -N/2 ,  e N  + x / @ ]  dies out in ~) 
N 

But  

iim P( [~:N + ,/-~/2, ~, ] < O) -- lim P(,'k. .... o ] > eN + ,,/rN/2 ) 
N N 
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(for small enough e) and (by Theorem 13 of Schonmann ~~ 

lim P( [ e N  + x / ~ / 2 ,  e N  + x / ~ ]  dies out in ~) = 0 
N 

So, we have justified the claim (4.8). 
Now, let 

2 i B = {0 x (N2T~N-'  , N2T~N] ~ [ e N +  x//-N/2, e N +  ,v/~] x N TN} 

The importance of the claims (4.7) and (4.8) is that they easily imply 

lim P ( B I D  f) = 1 
N 

So, we now may condition on the event B whenever we condition on the 
event D i and take the limit in N. 

Next, let M be the greatest integer less than v/N/log N and let It . . . . .  /log u 
be disjoint subintervals of [eN ,  e N +  v/-N/2) of length M. Of course, we are 
currently trying to show (4.5); clearly, it suffices to show that 

lim P(Vj ,  I t c~ H ' + ' # ~ I B c~ D ' )  = 1 
N 

2 i - - I  Now, on the event B n D i, the existence of a path from Z x N TN to 
7 i x x N - T  N (where x ~ ! j )  implies the existence of a path from (H~c~ 

"~ i - -  "~ i [eN,  N ) ) x N - T N  I to x x N - T  N. Indeed, whichever point in (H~c~ 
"> i - -  "~ i [eN,  N ) ) x N - T N  ~ connects (via ~/) to 0 x N - T  N would also connect to 

~ i x x N - T  x .  So, 

lim P(Vj ,  I j  ~ H '+'  # ( 3 1 B  n D ~) 
N 

>/lim 
N 

>/lim 
At 

9 i 
P(V], Z x N2T~N - ' *-+ I s x N - T  NI B n D ' )  

P(Vj ,  Z x N 2 T ~  - ' ~ ! i  x NZT~, )  

log  N 

~ 2 v ' i - -  t ~ I~ x N 2 T ~ )  >/lim 1--I P(Z x . ,  ~ N 
N j = l  

|og  N 

>/lim 1--[ P(/;  survives in 4) 
N j = l  

>1 lim( 1 - C e -  rM)log N 
N 

=1 

822/86/34.20 
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where the second and third inequalities come from the FKG inequality and 
the fifth inequality comes from Theorem 13 of Schonmann. ~"~ 

So we have now shown (4.5). As for the proof of (4.6), first notice that, 
by induction, 

lim inf P(Di n A i +  i ) >~ lim infd t a 2 d 2 a  3 . . . d i d  + t 

N N 

=(I -e) ~ 

>0  

We now look to Proposition 3.1, which the above calculation allows 
us to apply. Given D'-- that  is, given X~(T ~) = 0 - -we  know that X i +  ~ (on 
[0, T ~+~-  T~]) is distributed as the process Z in Proposition 3.1. Thus, 
using that proposition and noticing that 1 - e  is the probability that a 
Brownian motion hits - e  before 1 - e ,  we easily obtain (4.6), the result we 
seek. I 
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